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Abstract It has been shown that the last passage time in certain symmetrized models of
directed percolation can be written in terms of averages over random matrices from the
classical groups U(l), Sp(2l) and O(l). We present a theory of such results based on non-
intersecting lattice paths, and integration techniques familiar from the theory of random
matrices. Detailed derivations of probabilities relating to two further symmetrizations are
also given.
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1 Introduction

There are a number of striking results linking models of stochastic processes to random ma-
trix theory (for a recent work of this type see [4]; for reviews see [7, 22]). As an easy to
explain example, consider the following last passage percolation problem due to Hammers-
ley. In the unit square mark in points uniformly at random according to a Poisson rate with
intensity λ (thus the probability the square contains N points is equal to λN

N ! e
−λ). Join points

by straight line segments with the requirement that the segments have positive slope and
form a continuous path, and extend this path to begin at (0,0) and finish at (1,1). Define the
length of the extended path as the number of points it contains, and denote by l� = l�(λ)

the stochastic variable specifying the maximum of the lengths of all possible extended paths
(see Fig. 1). Then it is known from the work of Gessel [11] and Rains [20] (see also [5]) that

Pr(l� ≤ l) =
〈

l∏
j=1

e
√

λ cos θj

〉
U(l)

, (1.1)

P.J. Forrester (�)
Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia
e-mail: p.forrester@ms.unimelb.edu.au

E.M. Rains
Department of Mathematics, University of California, Davis, CA 95616, USA



834 J Stat Phys (2007) 129: 833–855

Fig. 1 Eight points in the unit
square, and the extended directed
paths of maximum length. Since
the number of segments in these

paths equals four, here l
�
n = 3

where the average is with respect to the eigenvalue probability density function (p.d.f.) of
random matrices chosen uniformly at random from the group U(l). The latter has the explicit
form

1

(2π)ll!
∏

1≤j<k≤l

|eiθk − eiθj |2. (1.2)

The formula (1.1) is central to the proof by Baik, Deift and Johansson [3] giving the limiting
scaled distribution of the longest increasing subsequence of a random permutation.

In a substantial work Baik and Rains [1] have considered symmetrized generalizations of
the Hammersley process, and have shown that the cumulative probability for the analogue of
the stochastic variable l� can be written as an average over the classical groups Sp(2l), O(l)

(for two particular symmetries), or U(2l), U(l) ⊕ U(l) (for two other symmetries). More-
over, random matrix formulas were also given [1] (see also [2]) for lattice generalizations of
these processes (in the case of the original Hammersley process the lattice generalization is
referred to as the Johansson model [14]). The proofs of [1] make sophisticated use of sym-
metric function or invariant theory, and have independent interest in those disciplines. On
the other hand it is reasonable to suggest that many researchers interested in directed per-
colation and growth processes will lack the necessary background in symmetric function or
invariant theory to fully appreciate these proofs. which has motivated us to seek alternative
derivations. Our proofs make use of a non-intersecting path picture of the Johansson growth
model [9, 15], an extension of this picture to a last passage percolation model with Bernoulli
random variables, together with techniques familiar from the theory of random matrices (the
applicability of such techniques have been foreshadowed in Sect. 6 of [1]). Another essential
ingredient from [1] is the use of bijections from the theory of Young tableaux (see e.g. [10]).
Here our presentation differs from that of [1] only in that we give more detail.

Our task then is to derive, from a non-intersecting paths picture, formulas known from
[1] giving cumulative probabilities of a suitable last passage percolation variable for gen-
eralizations of the Hammersely process in terms of random matrix averages. As already
mentioned, one such generalization is the Johansson model. In Sect. 2 its definition is re-
called, as is its formulation in the non-intersecting path picture. Formulas from the theory of
non-intersecting paths are then used to derive the analogue of (1.1). An analogous discus-
sion of a variant of this model, involving Bernoulli rather than geometric random variables,
is given in Sect. 3. The four symmetrized versions of the Johansson model are then treated
separately in each of the subsequent four sections.
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2 Johansson Model and Polynuclear Growth

We begin by defining the last passage percolation model introduced by Johansson [14].
Consider the upper right quadrant square lattice {(i, j) : i, j ∈ Z

+}. Associate with each
lattice site (i, j) a random non-negative integer variable xi,j chosen from the geometric
distribution with parameter aibj so that

Pr(xi,j = k) = (1 − aibj )(aibj )
k. (2.1)

Denote by (1,1)u/rh(n,n) a lattice path starting at (1,1) and finishing at (n,n) with each
lattice point therein successively connected by edges which are either directed upwards or
horizontally to the right. One defines the last passage time L�

n say as the maximum of the
sum of the integer variables associated with these lattice points. Thus

L�

n := max
∑

(1,1)u/rh(n,n)

xi,j . (2.2)

According to [1], for given parameters {ai}, {bj } the cumulative distribution can be written
as a random matrix average according to

Pr(L�

n ≤ l) =
n∏

i,j=1

(1 − aibj )

〈
n∏

j=1

l∏
k=1

(1 + aj e
−iθk )(1 + bje

iθk )

〉
U(l)

, (2.3)

where the average over U(l) refers to the probability density function (1.2). We seek a
derivation of (2.3), and analogous formulas from [1] for symmetrized versions of the Jo-
hansson model, within a non-intersecting paths representation of the model.

Let us first revise how non-intersecting paths relate to the Johansson model [9, 15]. This
is done via a geometrical construction, equivalent to the Robinson-Schensted-Knuth (RSK)
correspondence from the theory of Young tableaux [10], which gives a bijection between
non-negative integer matrices and pairs of non-intersecting lattice paths. Furthermore, the
maximum displacement of the top-most of these paths is equal to L�

n , with the profile of
this path also specifying the height profile in a statistical mechanical model referred to as the
polynuclear growth model. With regard to the latter, the entries xi,j of an n×n non-negative
integer matrix X = [xi,j ]i,j=1,...,n (for convenience rows are labelled from the bottom) now
represent the heights of columns of unit width centred about x = j − i which occur at time
t = i + j − 1 (in labelling the matrix in terms of x and t it is convenient to first rotate it
45◦ anti-clockwise). The columns are to be placed on top of the profile formed by earlier
nucleation events and their growth. The right boundary of the column corresponding to xi,j

is to be weighted a
xi,j

i while the left boundary is to be weighted b
xi,j

j , and these weights
are to be multiplied together with any existing weights along the same vertical segment of
the profile. During each time interval the existing profile or profiles are required to grow
one unit to the left and one unit to the right, with any resulting overlap, together with the
corresponding portion of the weights, recorded on a profile with base one unit below. In this
way a bijection between n × n integer matrices with each entry xi,j weighted aibj , and a
pair of weighted non-intersecting paths is obtained. A particular example is given in Fig. 2.

The bijection generates at most n non-intersecting paths. These paths start one unit apart
in the y-direction (at y = 0, . . . ,−(n − 1)). In the x-direction one member of the pair of
paths starts at x = −(2n − 3/2) and may go up in arbitrary integer amounts of a unit step at
x = −(2n+1/2−2j) for j = 1, . . . , n with each step weighted by bj , or to the right in steps



836 J Stat Phys (2007) 129: 833–855

Fig. 2 RSK correspondence in the polynuclear growth model picture between a weighted non-negative inte-
ger matrix and a pair of weighted non-intersecting lattice paths

of two units (these steps are unweighted). The other member starts at x = (2n − 3/2) and
may go up in arbitrary integer amounts of a unit step at x = (2n+ 1/2 − 2i) for i = 1, . . . , n

with each step weighted ai , or to the left in steps of two units, the latter being unweighted.
Furthermore the second member is constrained so that it joins with the first member at
x = 0. Both members are equivalent to what will be termed u/rh (up/right horizontal) non-
intersecting lattice paths. By definition such paths are defined on the square lattice and start
at x = 0, one unit apart in the y-direction (at y = 0, . . . ,−(n − 1)), and finish at x = n − 1,
with y-coordinates μl − (l − 1) (l = 1, . . . , n) where μ1 ≥ μ2 ≥ · · · ≥ μN ≥ 0. The path
starting at y = −(l − 1) is referred to as the level-l path. Each path may move either up or to
the right along the edges of the lattice, with each up step at x = j − 1 weighted qj . Define
the weight of a configuration of u/rh lattice paths as the product of all the step weights. Then
it is well known (see e.g. [21]) that with μ := (μ1,μ2, . . . ,μN) (because of the orderings of
the μi , μ forms a partition)∑

u/rh paths
displacements μ

(weight of the paths) = sμ(q1, . . . , qn), (2.4)

where sμ is the Schur polynomial.
We remark that u/rh non-intersecting lattice paths are equivalent to semi-standard

tableaux (numbered diagram of a partition λ such that the numbers weakly increase along
rows and strictly decrease down columns). Thus with λ̃l(j) denoting the number of vertical
steps in the level-l path at x = j −1, the lth row of the tableaux is of length

∑n

j=1 λ̃l(j) =: λl

and is numbered by λ̃l(j) lots of j ’s (j = 1, . . . , n in order). An explicit example is given
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in Fig. 3. Consequently if there are n lattice paths the numbering is from the set {1, . . . , n}
which is referred to as the content of the tableau. With λ = (λ1, . . . , λn) denoting the parti-
tion formed from the length of the rows, the tableaux is said to have shape λ.

For future reference we note that with μl(n, j) denoting the displacement of the level-l
path at x = −(2n + 1/2 − 2j) as resulting from the RSK correspondence and μl(i, n) equal
to the displacement of the level-l path at x = 2n + 1/2 − 2i, we have

n∑
l=1

(μl(n, j) − μl(n, j − 1)) =
n∑

i=1

xi,j , (2.5)

n∑
l=1

(μl(i, n) − μl(i − 1, n)) =
n∑

j=1

xi,j . (2.6)

Also for future reference we make note of quantities generalizing L�
n which are related to

the maximum displacements μl of the level-l paths for each l = 1,2, . . . . For this let (rd∗)l

denote the set of l disjoint (here meaning connecting no common lattice sites) rd∗ lattice
paths, the latter defined as either a single point, or points connected by segments formed out
of arbitrary positive integer multiples of steps to the right and steps up in the square lattice
1 ≤ i, j ≤ n. Generalizing the definition (2.2) by defining

L�(l)
n = max

∑
(rd∗)l

xi,j , (2.7)

a theorem of Greene [13] gives

L�(l)
n =

l∑
m=1

μm, (2.8)

and thus in particular [16]

μ1 = L�(1)
n := L�

n . (2.9)

It follows from the above discussion that with the entries of the n×n matrix X weighted
according to (2.1), the probability that X maps under the RSK correspondence to a pair of
non-intersecting paths with maximum displacements μ is given by [15]

n∏
i,j=1

(1 − aibj )sμ(a1, . . . , an)sμ(b1, . . . , bn). (2.10)

The equality (2.9) between μ1 and L�
n then implies the formula [1, 15]

Pr(L�

n ≤ l) =
n∏

i,j=1

(1 − aibj )
∑

μ:μ1≤l

sμ(a1, . . . , an)sμ(b1, . . . , bn). (2.11)

Thus we must now show that the sum over Schur functions in (2.11) can be written as the
average over U(l) in (2.3). Moreover we want to achieve this task within the framework of
non-intersecting paths.

An important notion for this purpose is that of the dual non-intersecting lattice paths
associated with a set of u/rh paths. The dual lattice paths connect points on the lattice
{(n − 1/2,m),n ∈ Z≥0,m ∈ Z}. Points are connected by segments which are directed either
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Fig. 3 Drawn in heavy lines on
the square lattice is a family of
two u/rh lattice paths with up
segments allowed at
x = 1,2,3,4, while drawn in
heavy dashed lines are the
corresponding four dual lattice
paths. Also given is the
semi-standard tableau encoding
the two u/rh lattice paths

right horizontal (rh) or diagonally down (dd), with a dd segment bisecting every u segment
of the u/rh lattice path. The dd segments are connected by rh segments to form dual lat-
tice paths starting at x = −1/2 and finishing at x = n − 1/2 in the x-direction, while in
the y-direction these paths start at y = k for k = 1,2, . . . ,μ1 where μ1 is the maximum
displacement of the level-1 path (see Fig. 3). In terms of tableaux, the dual lattice paths
correspond to reading down columns instead of across rows. The mapping carries over to
weighted paths by simply weighting the dd segment in the dual path by the value of the u
segment it bisects in the original u/rh path.

The key feature for our purpose is that the constraint on the u/rh lattice paths having max-
imum displacement less than or equal to l translates in the dual path picture as constraining
the number of paths to be less than or equal to l. As only dd segments are weighted we can
take the number of paths as being exactly equal to l. Furthermore we can regard a pair of
rh/dd lattice paths, each with the same end points and each containing l paths but weighted
from {bj } and {ai} respectively, as a single set of non-intersecting paths. In the latter the
second member of the pair is reflected about x = n − 1/2 so that its final positions are at
(2n − 1/2, k) for k = 1,2, . . . , l at it consists of right horizontal and up diagonal segments,
the latter being weighted by aj according to them passing through x = 2n + 1/2 − j . With
the initial and final y coordinates generalized to y

(0)

1 , . . . , y
(0)
l and y1, . . . , yl respectively, let

G2n(y
(0)

1 , . . . , y
(0)
l ;y1, . . . , yl) denote the total weight of all such paths. It then follows from

the dual lattice paths interpretation of the sum in (2.11) that

Pr(L� ≤ l) =
n∏

i,j=1

(1−aibj )G2n({y(0)
j = −(j −1)}j=1,...,l; {yj = −(j −1)}j=1,...,l ). (2.12)

Because each path in the family is directed, the weight G2n of all paths in the family is given
in terms of the weight of a single path in the family, g2n(y

(0);y) say. Thus the well known
Linström-Gessel-Viennot theorem (see e.g. [17]) gives

G2n(y
(0)

1 , . . . , y
(0)
l ;y1, . . . , yl) = det

[
g2n(y

(0)
j ;yk)

]
j,k=1,...,l

. (2.13)

Furthermore it is easy to see that

g2n(y
(0);y) = 1

2π

∫ 2π

0

N∏
j=1

(1 + aj e
−iθ )(1 + bj e

iθ )e−i(y−y(0))θ dθ. (2.14)



J Stat Phys (2007) 129: 833–855 839

Substituting (2.14) in (2.13), then substituting the result in (2.12) and recalling the general
formula [24]

det

[
1

2π

∫ 2π

0
a(θ)ei(j−k)θ dθ

]
j,k=1,...,n

=
〈

n∏
l=1

a(θl)

〉
U(n)

(2.15)

we see that (2.3) is reclaimed.

3 Polynuclear Growth with Bernoulli Random Variables

A variant of the last passage percolation model revised in the previous section is to replace
(2.1) by the Bernoulli distribution

Pr(xij = k) = (aibj )
k

1 + aibj

, k = 0,1. (3.1)

Let X = [xi,j ] i=1,...,m
j=1,...,n

be an array of such variables. One specifies the corresponding last

passage time by

L01
m,n := max

∑
(i′,j ′)∈bottom to top

u/rd paths

xi′,j ′ , (3.2)

where the sum is over all u/rd paths in the rectangle 1 ≤ i ′ ≤ m, 1 ≤ j ′ ≤ n from the bottom
row (row 1) to the top row (row m). The segments of the path join entries successively to
the north or north-east in the array.

Underlying this model is the dual RSK correspondence [10]. It has been related to a
single layer growth model in [12], but to our knowledge this has not previously been related
to a layered growth model formed out of non-intersecting paths. Here such a relationship
will be presented. The profile of the upper path coincides with the profile of the oriented
digital boiling model of [12].

Again, the entries xij of the array X are regarded as recording nucleation events. How-
ever, unlike the situation with the RSK correspondence itself, the entries of X are not first
rotated 45◦ before being associated with positions and times. Rather xi,j = 1 denotes a nu-
cleation event (a unit square) which is positioned above the segment x = j −1 to x = j , and
on top of earlier nucleation events and their growth (this is in common with the polynuclear
growth model of the previous section). These nucleation events occur at successive times
t = 1,2, . . . , n, with the positions recorded by 1’s in the corresponding rows of X. Thus to
begin, at t = 1 the nucleation events are read off from the first row of X and marked on the
line y = 0. As t 
→ t + 1, the existing profile(s) is to grow one unit to the right (but not the
left) until it joins up with the neighbouring nucleation event on the right. If there is no such
right neighbour, and this nucleation event is yet to grow (i.e. recorded in the previous time
step), it is to grow to x = n+1 and have its shape modified by removing the upper triangular
half of its final square. If it has right edge at x ≥ n + 1, it is to grow one unit to the right.
Also, the meeting of all nucleation events in going from t 
→ t + 1 are to be recorded on the
line y = −t as new nucleation events with left edge at the positions of the meetings.

This procedure is to stop after time m + l along y = −(l − 1) (l = 1, . . . ,m + 1), this
being the maximum time for which new nucleation events can be created and then grow
once. The layers of profiles which are so formed are of the form u/rh (up/right horizontal)
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Fig. 4 Mapping from a 0, 1 matrix to a pair of non-intersecting lattice paths

non-intersecting paths from x = 0 to x = n − 1, and ld/lh (left diagonal/left horizontal)
non-intersecting paths from x = n + m to x = n + 1 (see Fig. 4).

According to (2.4) and the surrounding text the total weight of all non-intersecting u/rh
paths initially equally spaced at y = 0, . . . ,−(n − 1) along x = 0, finishing at y = μj −
(j − 1), (j = 1, . . . , n) along x = n − 1, with up steps at x = j − 1 weighted bj is given by
sμ(b1, . . . , bn). Further, the dual paths of Fig. 3 are precisely the non-intersecting ld/lh paths
initially equally spaced at y = 0, . . . ,−(n−1) along x = n+m, finishing at y = μj −(j −1)

(j = 1, . . . , n) along x = n + 1, which make up the second family in the growth process.
With the possible up steps (each of unit length) at x = n + m + 1 − i weighted by ai , the
total weight of the paths is sμ′(a1, . . . , am), where μ′ denotes the partition corresponding to
the transpose of the diagram of μ.

It follows from this that with an n×m array of 0’s and 1’s formed according to (3.1), the
probability that it maps, under the dual RSK correspondence, to the above specified nested
growth profile with maximum displacement μ is given by

m∏
i=1

n∏
j=1

(1 + aibj )
−1sμ′(a1, . . . , am)sμ(b1, . . . , bn) (3.3)

(cf. (2.10)). Analogous to (2.11) we have the normalization condition

m∏
i=1

n∏
j=1

(1 + aibj )
−1

∑
μ

sμ′(a1, . . . , am)sμ(b1, . . . , bn) = 1. (3.4)

It follows immediately from (3.3) that

Pr(L01
m,n ≤ l) =

m∏
i=1

n∏
j=1

(1 + aibj )
−1

∑
μ1≤l

sμ′(a1, . . . , am)sμ(b1, . . . , bn). (3.5)
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From Fig. 3 and related text, we know that the Schur polynomial sμ′ can be interpreted
in terms of non-intersecting u/rh paths by reading along rows, while sμ can be interpreted
in terms of u/rd paths by reading down columns. In both cases the number of paths is equal
to μ1, which according to (3.5) is no bigger than l. Further, the left set of paths consists of
m steps, and the right set consists of n steps. Let G∗

n,m(�l(0); �l(0)), �l(0) := (l − 1, l − 2, . . . ,0)

denote the total weight of such paths. Analogous to (2.12) we have that

Pr(L01
m,n ≤ l) =

m∏
i=1

n∏
j=1

(1 + aibj )
−1G∗

n,m(�l(0); �l(0)). (3.6)

But according to the Linström-Gessel-Viennot theorem

G∗
n,m(�l(0); �l(0)) = det

[
g∗

n,m(l
(0)
j ; l(0)

k )
]
j,k=1,...,l

(3.7)

where g∗
n,m(x, y) is the weight of a single path of the prescribed type starting at x and

finishing at y. The latter can readily be seen to be given by

g∗
n,m(x;y) = 1

2π

∫ π

0

m∏
j=1

(1 + aj e
iθ )

n∏
k=1

(1 − bke
−iθ )−1e−iθ(y−x) dθ. (3.8)

Substituting (3.8) in (3.7), making use of (2.15), and substituting in (3.6) we reclaim the
expression for Pr(L01

m,n ≤ l) as a random matrix average [1],

Pr(L01
m,n ≤ l) =

m∏
i=1

n∏
j=1

(1 + aibj )
−1

〈(
m∏

j=1

l∏
k=1

(1 + aj e
iθk )

)(
n∏

j=1

l∏
k=1

(1 − bj e
−iθk )

)−1〉
CUEl

.

(3.9)

4 Matrices Symmetric about the Anti-Diagonal

With our convention of numbering rows from the bottom, the term anti-diagonal used here is
what is conventionally referred to as the diagonal of the matrix. Under the RSK correspon-
dence in the non-intersecting paths formulation, matrices symmetric about the anti-diagonal
give a bijection with pairs of non-intersecting u/rd lattice paths in which only one member
of the pair is independent.

Regarding this point, reflect the entries of a general n × n non-negative integer X about
the anti-diagonal to form the matrix XR = [xn+1−j,n+1−i]i,j=1,...,n. We see from the definition
(2.7) that the quantities L�(l)

n are invariant under this transformation, and thus according to
(2.8) so then too are the path displacements μl . Furthermore, it follows from (2.5) that

n∑
l=1

(μR
l (n, j) − μR

l (n, j − 1)) =
n∑

i=1

xn+1−j,i =
n∑

l=1

(μl(n + 1 − j,n) − μl(n − j,n)),

n∑
l=1

(μR
l (i, n) − μR

l (i − 1, n)) =
n∑

i=1

xj,n+1−i =
n∑

l=1

(μl(n,n + 1 − j) − μl(n,n − j)).

(4.1)
These equations respectively tell us that the total number of up steps at x = −2n − 1

2 + 2j

(x = 2n + 1
2 − 2i) in the paths corresponding to XR is equal to the number of up steps at
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x = 2j − 3
2 (x = −2i + 3

2 ) in the paths corresponding to X. Furthermore, if X = XR an
algorithm can be presented (due to Schützenburger; see e.g. [21]) which allows paths from
x = 2n − 1/2 to x = 1/2 to be constructed out of the paths from x = −2n + 1/2 to x =
−1/2. This permits a bijection between weighted matrices symmetric about the diagonal
and a single set of u/rh lattice paths provided the weighting of xi,j in the former is equal to
(aian+1−j )

xi,j (and thus bn+1−i = ai ). For example, the matrix of Fig. 2 is symmetric about
the anti-diagonal. With n = 2, setting bn+1−i = ai (i = 1, . . . , n) we see that the weight of
steps at x = −2n−1/2+2i is equal to the weight of up steps at x = 2i −1/2 (i = 1, . . . , n).

With the constraint X = XR , to obtain a probabilistic setting we should weight only the
sites i ≤ n + 1 − j . To achieve this without affecting the weights of the pairs of paths we
simply square the weights at the sites i < n+1− j , and set the weights at sites i > n+1− j

to unity. With ai = √
qi , we therefore choose

Pr(xi,j = k) = (1 − qiqn+1−j )(qiqn+1−j )
k, i < n + 1 − j,

Pr(xi,n+1−i = k) = (1 − qi)q
k
i

(4.2)

which corresponds to weighting the vertical segments of the single u/rh paths by q1, q2, . . . ,

qn from right to left. According to (2.4) with the maximum displacement of the level-l
path denoted by μl , the total weight of such paths is given by sμ(q1, . . . , qn). We conclude
that under the RSK mapping, with the independent entries chosen according to (4.2), the
probability a non-negative integer matrix symmetric about the anti-diagonal maps to a pair
of u/rh paths with final displacement μ is equal to

n∏
i=1

(1 − qi)
∏

1≤i<j≤n

(1 − qiqj )sμ(q1, . . . , qn). (4.3)

The specification (4.2) can be generalized, allowing for a generalization of (4.3). For
this one recalls [16] that the RSK correspondence has the property that for [xi,j ] symmetric
about the anti-diagonal

#{xi,n+1−i : xi,n+1−i odd} = #{μj : μj odd} =
n∑

j=1

(−1)j−1μ′
j , (4.4)

where μ′
j denotes the displacement of the level j conjugate path or equivalently the length

of the j th column in the corresponding tableau (recall Fig. 3). Hence if we generalize the
second probability in (4.2) to read

Pr(xi,n+1−i = k) = (1 − q2
i )

1 + βqi

βk mod 2qk
i (4.5)

then we have that (4.3) generalizes to

n∏
i=1

(1 − q2
i )

1 + βqi

∏
1≤i<j≤n

(1 − qiqj )β
∑n

j=1(−1)j−1μ′
j sμ(q1, . . . , qn).

Writing

L�

n := max
∑

(1,1)u/rh(n,n)

X=XR

xi,j
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it follows from this that [1]

Pr(L�

n ≤ l) =
n∏

i=1

1 − q2
i

1 + βqi

∏
1≤i<j≤n

(1 − qiqj )
∑

μ:μ1≤l

β
∑n

j=1(−1)j−1μ′
j sμ(q1, . . . , qn). (4.6)

Using symmetric function theory, Baik and Rains [1] show that the sum in (4.6) can be
written as a random matrix average involving the classical group Sp(2l). Matrices from
this subgroup of U(2l) have their eigenvalues in complex conjugate pairs {e±iθj }j=1,...,l ,
with 0 < θj < π (j = 1, . . . , l). Here we will give a derivation in keeping with integration
techniques from random matrix theory.

Proposition 1 Consider the eigenvalues with angles 0 < θj < π (j = 1, . . . , l) of matrices
from Sp(2l). Let 〈 〉Sp(2l) denote an average with respect to the corresponding eigenvalue
p.d.f.,

1

(2π)l

1

l!
l∏

k=1

|eiθk − e−iθk |2
∏

1≤j<k≤l

|eiθj − eiθk |2|1 − ei(θj +θk)|2. (4.7)

One has

Pr(L�

n ≤ 2l) =
n∏

i=1

1 − q2
i

1 + βqi

∏
1≤i<j≤n

(1 − qiqj )

〈
l∏

k=1

(
1

|1 − βe−iθk |2
n∏

j=1

|1 + qj e
iθk |2

)〉
Sp(2l)

,

(4.8)

Pr(L�

n ≤ 2l + 1) =
n∏

i=1

(1 − q2
i )

∏
1≤i<j≤n

(1 − qiqn+1−j )

〈
l∏

k=1

n∏
j=1

|1 + qj e
iθk |2

〉
Sp(2l)

. (4.9)

Proof The maximum possible height in the growth model relating to (3.5) is m, implying
the so called dual Cauchy identity

m∏
i=1

n∏
j=1

(1 + aibj ) =
∑
μ1≤m

sμ′(a1, . . . , am)sμ(b1, . . . , bn). (4.10)

Renaming the parameters, it follows from this that

l∏
k=1

n∏
j=1

|1 + qj e
iθk |2 =

∑
μ:μ1≤2l

sμ(q1, . . . , qn)sμ′(eiθ1 , e−iθ1 , . . . , eiθl , e−iθl ). (4.11)

Substituting (4.11) in (4.8), substituting the result in (4.6), equating coefficients of
sμ(q1, . . . , qn) and writing μ′ = ρ shows that (4.8) is equivalent to the matrix integral for-
mula 〈

l∏
k=1

1

|1 − βe−iθk |2 sρ(e
iθ1 , e−iθ1 , . . . , eiθl , e−iθl )

〉
Sp(2l)

= β
∑2l

j=1(−1)j−1ρj . (4.12)

Now, the meaning of the matrix integral is an integral over θk ∈ [0,π], weighted by (4.7).
Noting that the integrand is unchanged by θl 
→ −θl , and making use of the determinant
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formula for Schur polynomials

sλ(x1, . . . , xN) = det[qN−k+λk

j ]j,k=1,...,N

det[qN−k
j ]j,k=1,...,N

(4.13)

shows that the matrix integral is equal to

1

(2π)l2l l!
∫ π

−π

dθ1 · · ·
∫ π

−π

dθl

l∏
k=1

(eiθk − e−iθk )

|1 − βe−iθk |2 det

[
eiθj (ρ2l−k+1+k−1)

e−iθj (ρ2l−k+1+k−1)

]
j=1,...,l
k=1,...,2l

. (4.14)

The structure of the integral (4.14) is very common in random matrix theory [6, 19]. It
can be written as a Pfaffian, giving that (4.14) is equal to

1

2l
Pf

[
1

2π

∫ π

−π

eiθ − e−iθ

|1 − βe−iθ |2 (eiθ(ρj −j−ρk+k) − e−iθ(ρj −j−ρk+k))dθ

]
j,k=1,...,2l

, (4.15)

which after evaluating the integral therein reduces to

β−lPf
[
sgn(k − j)β |ρj −ρk+k−j |]

j,k=1,...,2l
. (4.16)

This Pfaffian is special case xj = ρj − j , f (xj ) = βxj in the general formula [8]

Pf

[(
f (xj )

f (xk)

)sgn(xj −xk)

sgn(xj − xk)

]
j,k=1,...,2l

=
l∏

j=1

f (xQ(2j−1))

f (xQ(2j))
ε(Q), (4.17)

where the permutation Q is such that

xQ(2j−1) > xQ(2j), Q(2j) > Q(2j − 1) (j = 1, . . . , l)

and thus evaluating to the r.h.s. of (4.12).
In regards to (4.9), use of an appropriate modification of (4.11) shows that this is equiv-

alent to the matrix integral formula

〈
sρ(e

iθ1 , e−iθ1 , . . . , eiθl , e−iθl , β)
〉
Sp(2l)

= β
∑2l+1

j=1 (−1)j−1ρj . (4.18)

To derive this, use of (4.7) and (4.13) shows that the matrix integral is equal to

1

(2π)l2l l!
∫ π

−π

dθ1 · · ·
∫ π

−π

dθl

l∏
k=1

(eiθk − e−iθk )

|1 − βe−iθk |2 det

⎡
⎣eiθj (ρ2l−k+2+k−1)

e−iθj (ρ2l−k+2+k−1)

βρ2l−k+2+k−1

⎤
⎦

j=1,...,l
k=1,...,2l+1

= 1

2l
Pf

[
A(2l+1)×(2l+1) [βρj +2l+1−j ]j=1,...,2l+1

[−βρk+2l+1−k]k=1,...,2l+1 0

]
,

where

A(2l+1)×(2l+1) :=
[

1

2π

∫ π

−π

eiθ − e−iθ

|1 − βe−iθ |2 (eiθ(ρj −j−ρk+k) − e−iθ(ρj −j−ρk+k))dθ

]
j,k=1,...,2l+1

.
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Here the second equality follows from standard integration methods of random matrix the-
ory, in the same way that (4.15) follows from (4.14). Computing the integral reduces this
to

β−(l+1)Pf

[ [sgn(k − j)β |ρj −ρk+k−j |]j,k=1,...,2l+1 [βρj +2l+1−j ]j=1,...,2l

[−βρk+2l+1−k]k=1,...,2l 0

]
.

But this is precisely the same as (4.16) with l 
→ l + 1, ρ2l+2 = 0, and so reduces to the
r.h.s. of (4.18). �

5 Matrices Symmetric about the Diagonal

According to the rules of the polynuclear growth model, if a non-negative integer ma-
trix X = [xi,j ]i,j=1,...,n maps to a pair of u/rh non-intersecting lattice paths (P1,P2) of the
same final displacement, then the transposed matrix XT = [xj,i]i,j=1,...,n maps to the pair of
u/rh non-intersecting paths (P2,P1). Hence the Robinson-Schensted-Knuth correspondence
when applied to symmetric matrices X = XT gives a bijection with a single set of u/rh lattice
paths, since then we must have P1 = P2. To obtain a bijection between weighted symmetric
matrices and a weighted set of u/rh lattice paths, and furthermore to obtain a probabilistic
setting, we weight only the entries i ≤ j , with the value of xi,j for i > j fixed by symmetry.
Arguing then as in the derivation of (4.3) we see with

Pr(xi,j = k) = (1 − qiqj )(qiqj )
k, i < j, Pr(xi,i = k) = (1 − qi)q

k
i (5.1)

the probability the symmetric matrix X maps to a set of u/rh paths with final displacements
μ is equal to [14]

n∏
i=1

(1 − qi)
∏

1≤i<j≤n

(1 − qiqj )sμ(q1, . . . , qn). (5.2)

As with (4.3) this can be generalized to the case that the diagonal entries are chosen
according to

Pr(xi,i = k) = (1 − αqi)(αqi)
k. (5.3)

Thus recalling [9, 16] that in the Robinson-Schensted-Knuth correspondence for symmetric
matrices

n∑
j=1

xj,j =
n∑

j=1

(−1)j−1μj , (5.4)

with the generalization (5.3), (5.2) should correspondingly be generalized to read [1]

n∏
i=1

(1 − αqi)
∏

1≤i<j≤n

(1 − qiqj )α
∑n

j=1(−1)j−1μj sμ(q1, . . . , qn). (5.5)

Writing

L�

n := max
∑

(1,1)u/rh(n,n)

X=XT

xi,j



846 J Stat Phys (2007) 129: 833–855

and noting that

n∑
j=1

(−1)j−1μj = #(columns of odd length in μ) =
l∑

k=1

μ′
k mod 2,

where l = μ1, it follows from (5.5) that

Pr(L�

n ≤ l) =
n∏

i=1

(1 − αqi)
∏

1≤i<j≤n

(1 − qiqj )
∑

μ:μ1≤l

α
∑l

k=1 μ′
k

mod 2sμ(q1, . . . , qn). (5.6)

Starting with this formula, Baik and Rains [1] proved the following analogue of Proposi-
tion 1, involving now a random matrix average involving the classical group O(l). Matrices
from this subgroup of U(l) form two disjoint components, O+(l) and O−(l), distinguished
by the determinant equalling +1 or −1 respectively. The complex eigenvalues occur in com-
plex conjugate pairs, and there is a real eigenvalue z = −1 for matrices in O−(l) with l odd,
a real eigenvalue z = 1 for matrices in O+(l) with l even, and two real eigenvalues z = ±1
for matrices in O−(l) with l even.

Proposition 2 Consider the eigenvalues with angles 0 < θj < π (j = 1, . . . , l) of matrices
from O(l). Define

〈·〉O(l) = 1

2

(〈·〉O+(l) + 〈·〉O−(l)

)
,

where 〈 · 〉O+(l) denotes an average with respect to the eigenvalue p.d.f. for random matrices
from the classical group O+(l),

2

(2π)l/2(l/2)!
∏

1≤j<k≤l/2

|eiθj − eiθk |2|1 − ei(θj +θk)|2, l even, (5.7)

1

(2π)(l−1)/2((l − 1)/2)!
(l−1)/2∏

j=1

|1 − eiθj |2
∏

1≤j<k≤(l−1)/2

|eiθj − eiθk |2|1 − ei(θj +θk)|2, l odd,

(5.8)

and 〈 · 〉O−(l) denotes an average with respect to the eigenvalue p.d.f. for random matrices
from the classical group O−(l),

1

(2π)l/2−1(l/2)!
l/2−1∏
k=1

|1 − e2iθk |2
∏

1≤j<k≤l/2−1

|eiθj − eiθk |2|1 − ei(θj +θk)|2, l even, (5.9)

1

(2π)(l−1)/2((l − 1)/2)!δ(θl − π)

×
(l−1)/2∏

j=1

|1 + eiθj |2
∏

1≤j<k≤(l−1)/2

|eiθj − eiθk |2|1 − ei(θj +θk)|2, l odd. (5.10)

We have

Pr(L�

n ≤ l) =
n∏

i=1

(1 − αqi)
∏

1≤i<j≤n

(1 − qiqj )

〈
det(1l + αU)

n∏
j=1

(1l + qjU)

〉
U∈O(l)

. (5.11)
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Proof Use of the dual Cauchy identity (4.10) in (5.11) and comparison with (5.6) shows
that (5.11) is equivalent to the matrix integral evaluation

〈
det(1l + αU)sρ(U)

〉
U∈O(l)

= α
∑l

j=1 ρj mod 2
, (5.12)

where sρ(U) denotes the Schur polynomial as a function of all the eigenvalues of U .
Consider first the l even case, l 
→ 2l, and consider separately the components O±(2l) of

O(2l). Substituting the eigenvalue p.d.f. for O+(2l) (5.7), and proceeding as in the deriva-
tion of (4.16), which involves use of (4.13) and reduction to a Pfaffian, shows〈

det(12l + αU)sρ(U)
〉
U∈O+(2l)

= 21−lPf[ajk]j,k=1,...,2l , (5.13)

where

ajk = (
(1 + α2)δ(ρj −j)−(ρk−k),odd + 2αδ(ρj −j)−(ρk−k),even

)
sgn(k − j)

=
(

1

2
(1 + α)2 − 1

2
(1 − α)2(−1)(ρj −j)−(ρk−k)

)
sgn(k − j). (5.14)

The task is therefore to compute the Pfaffian of the matrix with these entries. For this one
uses the identity [23]

Pf(A + B) =
∑

S⊆{1,2,...,2l}
|S| even

(−1)
∑

j∈S j−|S|/2PfS(A)PfS̄ (B), (5.15)

where PfS(A) denotes the Pfaffian of A restricted to rows and columns specified by the
index set S, and similarly PfS̄ (B). With

A =
[

1

2
(1 + α)2sgn(k − j)

]
j,k=1,...,2l

,

B =
[
−1

2
(1 − α)2(−1)(ρj −j)−(ρk−k)sgn(k − j)

]
j,k=1,...,2l

,

and noting

Pf[sgn(k − j)] = 1, Pf[aj,k(−1)(ρj −j)−(ρk−k)] = (−1)
∑

(ρj −j)Pf[aj,k]
we see that

PfSA = 2−|S|/2(1 + α)|S|, PfS̄B = (−2)−|S̄|/2(1 − α)2l−|S|(−1)
∑

j∈S̄ ρj −j
.

It thus follows from (5.15) that

21−lPf(A + B) = 2
∑

S⊆{1,2,...,2l}
|S| even

(
1 + α

2

)|S|(1 − α

2

)2l−|S|
(−1)

∑
j∈S̄ ρj . (5.16)

Now, in general∑
S⊆{1,2,...,2l}

|S| even

x |S|y2l−|S|(−1)
∑

j∈S̄ ρj
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= 1

2

( ∑
S⊆{1,2,...,2l}

x |S|y2l−|S|(−1)
∑

j∈S̄ ρj +
∑

S⊆{1,2,...,2l}
x |S|(−y)2l−|S|(−1)

∑
j∈S̄ ρj

)

= 1

2

(
2l∏

j=1

(x + (−1)ρj y) +
2l∏

j=1

(x − (−1)ρj y)

)
.

Using this result to evaluate (5.16) and substituting in (5.13) gives the matrix integral eval-
uation 〈

det(12l + αU)sρ(U)
〉
U∈O+(2l)

= α
∑2l

j=1 ρj mod 2 + α
∑2l

j=1(ρj +1)mod 2
. (5.17)

We turn now to the corresponding formula for the average over O−(2l). The analogue of
(5.13) in this case is

〈
det(12l + αU)sρ(U)

〉
U∈O−(2l)

= (1 − α2)

2l−1
[ζ ]Pf[aj,k + ζbj,k]j,k=1,...,2l , (5.18)

where aj,k is as in (5.13) while bj,k = (−1)ρk−k − (−1)ρj −j , and [ζ ] denotes the coefficient
of ζ . Observing that

[bjk] = �u �wT − �w�uT , �u = [1]j=1,...,2l , �w = [(−1)ρj −j ]j=1,...,2l , (5.19)

shows that [bjk] has rank 2. It follows that the Pfaffian in (5.18) is linear in ζ , and so the
r.h.s. of (5.18) can be rewritten

(1 − α2)

2l−1

1

ζ

(
Pf

[[ajk] + ζ [bjk]
] − Pf[ajk]

)
. (5.20)

With γ, ζ1, ζ2 arbitrary non-zero constants, the structure of [bjk] and use of elementary row
and column operations verifies that this in turn can be rewritten

(1 − α2)

2l−1

1

ζ1ζ2

⎛
⎝Pf

⎡
⎣ [ajk] ζ1 �w ζ2 �u

−ζ1 �wT 0 γ

−ζ2 �uT −γ 0

⎤
⎦ − γ Pf[ajk]

⎞
⎠ . (5.21)

Setting ζ1 = 1
2 (1−α)2, ζ2 = (1+α)2, adding one half of the final row/column to the second

last row/column, and subtracting the second last row/column from the final row column,
then setting γ = (1 + α2) allows (5.21) to be rewritten as

21−l

1 − α2

(
Pf[ajk]2(l+1)×2(l+1)

∣∣
ρ2l+1=ρ2l+2=0

− (1 + α2)Pf[ajk]2l×2l

)
. (5.22)

Comparing (5.13) and (5.17) tells us that

Pf[ajk]2l×2l = 2l−1
(
α

∑2l
j=1 ρj mod 2 + α

∑2l
j=1(ρj +1)mod 2)

.

Substituting in (5.22) and simplifying implies the matrix integral evaluation

〈
det(12l + αU)sρ(U)

〉
U∈O−(2l)

= α
∑2l

j=1 ρj mod 2 − α
∑2l

j=1(ρj +1)mod 2
. (5.23)

Adding this to (5.17) verifies (5.12) in the case l even.
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Similar working suffices in the l odd case, l 
→ 2l + 1. In regards to the average over
O+(2l + 1), making use of the explicit form of the p.d.f. (5.10), the determinant form of
the Schur polynomial (4.13), and integration techniques from random matrix theory, one
obtains the Pfaffian formula

〈
det(12l+1 + αU)sρ(U)

〉
U∈O+(2l+1)

= (1 + α)

2l
Pf

[ [ajk]j,k=1,...,2l+1 [1]j=1,...,2l+1

−[1]k=1,...,2l+1 0

]
, (5.24)

where ajk is specified by (5.14). This Pfaffian can in fact be evaluated by making use of
the Pfaffian evaluation implied by the equality of (5.13) and (5.17). To see this, multiply
the final row and column of the matrix in (5.24) by (1 + α)2, and balance the equation by
dividing by a prefactor of (1 + α)2 on the r.h.s. Next subtract the 2nd last row from the final
row, and 2nd last column from the final column. Finally, write in the 2nd last entry of the
final row and column (1 + α)2 = (1 + α2) + 2α. This shows that (5.24) is equal to

1

2l (1 + α)
Pf[A(2l+2)×(2l+2)|ρ2l+2=ρ2l+1 + B ′], (5.25)

where A(2l+2)×(2l+2) := [ajk]j,k=1,...,2l+2 while B ′ has all entries zero except for the second
last entry of the final column, which is 2α, and the second last entry of the final row, which
is −2α. Making use of (5.15) shows that this in turn is equal to

1

2l (1 + α)
(PfA(2l+2)×(2l+2)|ρ2l+2=ρ2l+1 + 2αPfA2l×2l ). (5.26)

But the value of PfA2l×2l for general l is known from the equality between (5.13) and (5.17),
so we find that (5.27) reduces to

α
∑2l+1

j=1 ρj mod 2 + α
∑2l+1

j=1 (ρj +1)mod 2 (5.27)

thus giving the evaluation of the random matrix average in (5.24).
For the average over O−(2l + 1), we note that a change of variables θj 
→ π − θj

(j = 1, . . . , l) shows〈
det(12l+1 + αU)sρ(U)

〉
U∈O−(2l+1)

= (−1)|ρ|〈det(12l+1 − αU)sρ(U)
〉
U∈O+(2l+1)

. (5.28)

Substituting (5.27) with α 
→ −α for the average on the r.h.s. shows that this is equal to

α
∑2l+1

j=1 ρj mod 2 − α
∑2l+1

j=1 (ρj +1)mod 2
. (5.29)

Finally, taking the arithmetic mean of (5.27) and (5.29), we obtain the sought evaluation
(5.12) with l 
→ 2l + 1. �

6 Matrices Symmetric about Both the Diagonal and Anti-Diagonal

Let the 2n × 2n matrix X = [xi,j ]i,j=1,...,2n have non-negative integer entries, and label the
rows from the bottom. Suppose furthermore the entries are symmetric with respect to re-
flections in both the diagonal (xi,j = xj,i , i > j ) and anti-diagonal (xi,j = xi,2n+1−j , i >

2n + 1 − j ). Because X is symmetric about the diagonal, the RSK correspondence maps
X to a pair of identical non-intersecting u/rh lattice paths (P,P ) say. On the other hand X
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being symmetric about the anti-diagonal implies X maps to the lattice path pair (P R,P ),
where P R is the Schützenberger dual of P . Consequently in this case X maps under the
RSK correspondence to a single set of at most 2n u/rh non-intersecting lattice paths P with
the special property that P = P R .

We will suppose furthermore that the entries on the anti-diagonal are constrained to be
even. Then according to (4.4) all final displacements μi of the paths must be even. A parti-
tion with parts 2λi so each part is even will be written 2λ.

The independent elements of X can be chosen to be xi,j with i ≤ j (i, j = 1, . . . , n) and
i ≤ 2n + 1 − j (i = 1, . . . , n, j = n + 1, . . . ,2n). We choose the value of each such xi,j ,
excluding those on the diagonal or anti-diagonal, according to the geometric distribution

Pr(xi,j = k) = (1 − qiqj )(qiqj )
k.

On the anti-diagonal we choose

Pr(xi,2n+1−i = k) =
{

(1 − q2
i )q

k
i , k even,

0, otherwise
(6.1)

and on the diagonal

Pr(xi,i = k) = (1 − αqi)(αqi)
k (i = 1, . . . , n). (6.2)

The bijection then implies that the probability X maps to a set of at most 2n non-intersecting
u/rh lattice paths of final displacement 2λ is equal to

n∏
i=1

(
(1 − q2

i )(1 − αqi)

n∏
j=i+1

(1 − qiqj )

n+i∏
j=n+1

(1 − qiqj )

)
α

∑2n
l=1 λl ss.d.

2λ (q1, . . . , q2n), (6.3)

where

ss.d.
2λ (q1, . . . , q2n) :=

∑∗ 2n∏
j=1

q
1
2

∑2n
l=1 λ̃l (j )

j (6.4)

with λ̃l(j) denoting the number of vertical steps at x = j − 1 contained in the level-l path
and the asterisk denoting that the sum is over all self dual u/rh non-intersecting lattice paths
with final displacement 2λ. Because for such self dual lattice paths λ̃l(j) = λ̃l(2n + 1 − j)

(recall the discussion below (4.1)) we have

2n∏
j=1

q
1
2

∑2n
l=1 λ̃l (j )

j =
n∏

j=1

(qjq2n+1−j )
1
2

∑2n
l=1 λ̃l (j ).

This allows us to set

qi = q2n+1−i (i = 1, . . . , n),

and so with

s̃s.d.
2λ (q1, . . . , qn) :=

∑∗
ss.d.

2λ (q1, . . . , q2n)

∣∣∣ qi=q2n+1−i
(i=1,...,n)

=
n∏

j=1

q

∑2n
l=1 λ̃l (j )

j (6.5)
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Fig. 5 The self dual tableaux of shape 42 and content 4, the corresponding domino tableaux and the corre-
sponding pair of tableaux of shape 2, content 2, and shape 1, content 1

(6.3) reads
n∏

i=1

(1 − αqi)

n∏
i,j=1

(1 − qiqj )α
∑2n

j=1(−1)j−1λj s̃s.d.
2λ (q1, . . . , qn). (6.6)

As noted in [1], the polynomial s̃s.d.
2λ is expressible in terms of Schur polynomials. To un-

derstand this point, one must first establish a relation between self dual lattice paths, repre-
sented as self dual tableaux, and domino tableaux. Regarding the latter, consider the diagram
of a partition 2λ. Define a domino tableau, of shape 2λ with content from {n+1, . . . ,2n}, as
a tiling of the diagram by dominos with the dominos numbered from the set {n + 1, . . . ,2n}
(each number repeated twice to fill the two squares of the domino) such that the number
given to different dominos strictly increase down columns and weakly increase along rows.
It is a known result (see e.g. [25]) that there is a bijection between self dual tableaux of
shape 2λ, content 2n, and domino tableaux of shape 2λ with content from {n + 1, . . . ,2n}.
In particular, to construct a domino tableau from a self dual tableau P say, one applies in
succession the Schützenberger evacuation operation (see e.g. [21]), and the operation of re-
moving the last square displaced in this operation. The domino formed by the evacuated and
removed squares is numbered by the number of the removed square, which will be between
n+ 1 and 2n (note that P being self dual implies the sum of the entries of the evacuated and
removed squares is 2n+1). The procedure is repeated until all dominos have been identified
and numbered (see Fig. 5 for an example of the end product of this mapping).

Having established the bijection between self dual tableaux and domino tableaux, one
now makes use of a bijection between domino tableaux of shape 2λ and content from {n +
1, . . . ,2n}, and pairs of semi-standard tableaux (P,Q) of shape (μ, κ) each of content n

with

shapeP = (λ1, λ3, . . . , λm) =: λ+, shapeQ = (λ2, λ4, . . . , λm−1) =: λ−, (6.7)

where m equals the length of 2λ if the latter is odd, and one minus the length if it is even (and
then λm = 0). To construct P (Q), remove all columns from the domino tableau for which
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the absolute value of the column number minus the length of the column is odd (even),
and remove all even (odd) numbered rows. Finally subtract n from each of the numbers (an
example of the result of this mapping is given in Fig. 5). Recalling the definition (6.5) of
s̃s.d.

2λ and the definition (2.4) of the Schur polynomials, it follows that

s̃s.d.
2λ (q1, . . . , qn) = sλ+(q1, . . . , qn)sλ−(q1, . . . , qn). (6.8)

Consequently the probability (6.6) can be written as

n∏
i=1

(1 − αqi)

n∏
i,j=1

(1 − qiqj )α
∑2n

j=1(−1)j−1λj sλ+(q1, . . . , qn)sλ−(q1, . . . , qn). (6.9)

In the recent work [9] (6.9) was stated without derivation as being equal to the probability
that the 2n × 2n matrix X, symmetric about both the diagonal and anti-diagonal, and with
elements distributed according to (6.1) and (6.2), maps under the RSK correspondence to a
set of at most 2n non-intersecting u/rh lattice paths of final displacement 2λ. This is precisely
the result derived here.

From the definition (2.4) of the Schur polynomials in terms of non-intersecting lattice
paths, it is easy to see that the well known identity

∑
λ−: λ+ fixed

α
∑2n

j=1(−1)j−1λj sλ−(q1, . . . , qn) = sλ+(q1, . . . , qn,α)

holds. Thus the marginal probability of λ+ in (6.9) is equal to

n∏
i=1

(1 − αqi)

n∏
i,j=1

(1 − qiqj )sλ+(q1, . . . , qn)sλ+(q1, . . . , qn,α). (6.10)

This in turn implies that with

L�
2n := max

∑
(1,1)u/rh(2n,2n)

X=XT =XR

xi,j

we have

Pr(L�
2n ≤ 2l) = Pr(L�

2n ≤ 2l + 1)

=
n∏

i=1

(1 − αqi)

n∏
i,j=1

(1 − qiqj )
∑

λ+:λ1≤l

sλ+(q1, . . . , qn)sλ+(q1, . . . , qn,α).

(6.11)

The sum in (6.11) is a special case of that in (2.11)—thus replace n 
→ n + 1 in the latter
and set ai = bi = qi (i = 1, . . . , n), an+1 = 0, bn+1 = α. It therefore follows from (2.3) that

Pr(L�
2n ≤ 2l) = Pr(L�

2n ≤ 2l + 1)

=
n∏

i=1

(1 − αqi)

n∏
i,j=1

(1 − qiqj )

〈
l∏

k=1

(1 + αeiθk )

n∏
j=1

l∏
k=1

|1 + qj e
iθk |2

〉
U(l)

. (6.12)
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This result is the special case β = 0 (the effect of setting β = 0 is to constrain the elements on
the anti-diagonal of X to be even) of a result first derived in [1] using methods of symmetric
function theory to sum over a β-generalization of (6.3).

7 Matrices with a Point Reflection Symmetry

The point (n + 1/2, n + 1/2) is at the centre of the region 1 ≤ x, y ≤ 2n. A point (x, y)

in this region reflected about this central point maps to the point (2n + 1 − x,2n + 1 − y).
We thus say that a 2n × 2n matrix X has a point reflection symmetry (about the point
(n + 1/2, n + 1/2)) if xi,j = x2n+1−i,2n+1−j (i, j = 1, . . . , n) or consequently if X = (XR)T .
For a matrix with this symmetry we can take as the independent elements the triangular
region below the anti-diagonal i < 2n+ 1 − j (i, j = 1, . . . ,2n) together with the portion of
the anti-diagonal i = 2n + 1 − j (i, j = 1, . . . , n).

We seek the constraint on the pairs of paths (P1,P2), with both P1 and P2 of the
same final displacements, which according to the RSK mapping are in correspondence
with matrices X with a point reflection symmetry. We have already noted that with X

mapping under RSK to (P1,P2), XR := [x2n+1−j,2n+1−i]i,j=1,...,2n maps to (P R
2 ,P R

1 ) while
XT := [xj,i]i,j=1,...,2n maps to (P R

1 ,P R
2 ) and hence matrices with the point reflection symme-

try X = (XR)T map to a pair of u/rh lattice paths of the same final displacements constrained
so that

P1 = P R
1 , P2 = P R

2 . (7.1)

We choose the independent entries of X according to the geometric distribution

Pr(xi,j = k) = (1 − qiqj )(qiqj )
k,

where to be compatible with the point reflection symmetry we require q2n+1−i = qi (i =
1, . . . , n). With this specification it follows from the bijection that the probability X maps to
a pair of u/rh lattice paths of final displacement μ is equal to

(
n∏

i,j=1

(1 − qiqj )s̃
s.d.
μ (q1, . . . , qn)

)2

.

We know from (6.8) that when the length of the parts of μ are all even, s̃s.d.
μ can be given

in terms of Schur polynomials. This is also true in the general case [25]. One again proceeds
by noting that there is a bijection between a general self dual tableaux of shape λ and domino
tableaux. An immediate consequence is that unless λ admits a domino tiling—for which the
necessary and sufficient condition is that the number of points (i, j) in the diagram of λ

with i + j even is equal to the number of points with i + j odd—one has s̃s.d.
μ = 0. It is

also true that domino tableaux are in bijective correspondence with pairs of semi-standard
tableaux of shape (μ(0),μ(1)), |μ(0)| + |μ(1)| = |μ|, each of content n where μ(0) and μ(1)

are the so called 2-quotient of the partition μ. Regarding the latter, let μ be a partition of
length m. Add to μ the partition δm := (m− 1,m− 2, . . . ,1,0), and from this construct two
new partitions μ̃(0), μ̃(1) of lengths m(0),m(1), the first consisting of the even parts of μ+ δm,
and the second the odd parts of μ + δm. The 2-quotient is the pair of partitions μ(0), μ(1)

specified by [18]

μ(0) = μ̃(0)/2 − δm(0) , μ(1) = (μ̃(1) + 1)/2 − δm(1) .
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Analogous to (6.8) one therefore has that if μ admits a domino tiling, then

s̃s.d.
μ (q1, . . . , qn) = s̃μ(0) (q1, . . . , qn)s̃μ(1) (q1, . . . , qn). (7.2)

Regarding the converse of this statement, it’s easy to see that the 2-quotient of a partition
which admits a domino tiling is unique, while the 2-quotient of a partition which does not
admit a domino tiling coincides with the 2-quotient of a partition which does. Hence, given
arbitrary partitions μ(0), μ(1) there is a unique partition μ which admits a domino tiling and
is such that (7.2) is satisfied. Furthermore, from the definition of a 2-quotient, if μ1 ≤ 2l

then μ
(0)

1 ≤ l and μ
(1)

1 ≤ l, while if μ1 ≤ 2l +1 then μ
(0)

1 ≤ l +1 and μ
(1)

1 ≤ l, or μ
(1)

1 ≤ l +1
and μ

(0)

1 ≤ l. Thus with

L
�

2n := max
∑

(1,1)u/rh(2n,2n)

xi,j

we have

Pr(L�

2n ≤ 2l) =
n∏

i,j=1

(1 − qiqj )
2

∑
μ:μ1≤2l

(
s̃s.d.
μ (q1, . . . , qn)

)2

=
(

n∏
i,j=1

(1 − qiqj )
∑

κ:κ1≤l

(sκ (q1, . . . , qn))
2

)2

= (
Pr(L�

n ≤ l)
)2∣∣{ai }={bi }={qi }, (7.3)

where the final equality follows upon comparison with (2.11), and

Pr(L�

2n ≤ 2l + 1) =
n∏

i,j=1

(1 − qiqj )
2

∑
μ:μ1≤2l+1

(
s̃s.d.
μ (q1, . . . , qn)

)2

=
n∏

i,j=1

(1 − qiqj )
2

∑
κ:κ1≤l+1

(sκ(q1, . . . , qn))
2

∑
κ:κ1≤l

(sκ (q1, . . . , qn))
2

= Pr(L�

n ≤ l + 1)|{ai }={bi }={qi }Pr(L�

n ≤ l)|{ai }={bi }={qi }, (7.4)

The results (7.3) and (7.4) were stated without derivation in [2]. A proof of (7.3) is given
in [1, Theorem 7.1 combined with Corollary 5.3]. As mentioned in the Introduction, the
derivation given here is an expanded form of the method of [1].
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